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Abstract

We present a systematic analysis of point-contact Andreev reflection (PCAR) spectra for

ferromagnetic materials, using both modeling and experimental data. We emphasize the

importance of consistent data analysis to avoid possible misinterpretation of the data. We

consider the relationship between ballistic and diffusive transport, the effect of different

transport regimes on spin polarization measurements, and the importance of

unambiguous identification of the type of transport regime. We find that in a realistic

parameter range, the analysis of PCAR spectra of purely diffusive character by a ballistic

model yield approximately the same (within ~3%) values of the spin polarization and the

barrier strength Z larger by ~ 0.5-0.6. We also consider the dependence of polarization

values on Z, and have shown by simple modeling that letting the superconducting gap

vary as an adjustable parameter can result in a spurious dependence of the spin-

polarization Pc on Z.  At the same time we analyzed the effects of finite Z on the apparent

value of Pc measured by the PCAR technique, using a large number of examples from

both our own measurements and from the literature. We conclude that there is a system-

dependent variation in Pc (Z), presumably due to spin-flip scattering at the interface.

However, the exact type of this dependence is hard to determine with any statistical

certainty.
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Spin-polarized ferromagnetic materials are set to play a key role in the next-

generation electronic devices, based on the electron’s spin rather than charge.1The

performance of many of these spintronics devices improves dramatically as the spin

polarization, P, of the ferromagnetic material increases1. Particular attention has focused

on the so-called 'half-metals', in which the electrons responsible for the metallic transport

all have the same spin (either spin up or spin down), while the electrons with the opposite

spin are insulating. Half-metals have the maximum attainable value of spin polarization

(100%). Most of the experimental studies to determine P have been carried out by the

spin-dependent tunneling technique, pioneered by Tedrow and Meservey.2 This method

requires the material of interest to be fabricated as part of a ferromagnet/superconductor

tunnel junction, in which the superconducting density of states is then Zeeman-split by

the application of a magnetic field of several Tesla. The other conventional technique is

spin-resolved photoemission, which measures the spin of the electrons emitted from a

region close to the surface of the ferromagnet of the order of 5–20 A, and thus is quite

surface-sensitive.3

The point contact Andreev reflection (PCAR)4,5 technique, which is considerably

easier to put into practice, serves to expedite and widen the searches for many new

materials that are too difficult to incorporate into tunnel junctions. PCAR is a technique

in which the conductance (G ≡ dI/dV) is measured for an electrical point contact with

little or no tunneling barrier established between a superconducting tip and a

ferromagnetic counter-electrode (or vice versa). The presence of spin-polarized current in

the ferromagnet alters the conductance of the contact in a known way, giving rise to a

new technique to determine Pc (the spin polarization measured by PCAR).  This method

offers several advantages. With no restrictions on the sample geometry, one can avoid

complex fabrication steps. In addition, the PCAR method has excellent energy resolution

(~0.1 meV), and does not require an applied magnetic field.  Perhaps the only significant

disadvantage of PCAR, compared to other techniques (unless it is done in situ), comes

from a possible surface modification, due to uncontrolled surface oxides, or other

chemical reactions on the surface of both the ferromagnet and the superconductor. The

effect of this surface modification on Pc is impossible to quantify, but, this drawback

notwithstanding, the results obtained by the PCAR technique are usually in good
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agreement with values obtained by other methods where the surface oxidation is better

controlled (Ref. 2). A plausible explanation for the success of the PCAR method is that

the fragile surface oxide layer is usually penetrated as the point contact is established.

PCAR spectra to date have been typically analyzed using a modification of the

Blonder-Tinkham-Klapwijk (BTK) model6, to include a spin polarization of the metal.4,7

It is a weak coupling theory that combines all interface effects into a single dimensionless

parameter, Z, which does not necessarily correspond to any physical parameter

characterizing the interface barrier. Recently, the applicability of the BTK and the

modified BTK formulas to the spin polarization measurements has been questioned.8

Undoubtedly, the BTK theory neglects some of the delicate surface phenomena, such as

the presence of surface states and the effects of lattice relaxation. The theory also makes

assumptions the validity of which are difficult to evaluate, such as the δ−functional form

for the barrier, the step-function shape of the voltage drop across the barrier, and lateral

momentum conservation. In addition, the modified BTK model also assumes spin-

independent barriers.4,7 Xia et al (Ref. 8) performed advanced LDA calculations for

Andreev transport across realistic interfaces. These calculations took care of some, but

not of all the issues listed above. However, they were not able to satisfactorily describe

experimental curves5, including the contacts with non-magnetic metals, while the

modified BTK formulas, treating Z as an adjustable parameter, provide an excellent

description of the same curves. Although the formalism of Ref. 6 is based on a derivation

where a δ-shaped barrier is assumed, Z actually incorporates more physics than just the

strength of the δ-function, and, therefore, the formalism works much better than could

have been expected.9 That Z is not the real barrier strength in actual measurements is

emphasized by the fact that sometimes the BTK model fits experimental curves

surprisingly well with Z = 0, although formally, due to the Fermi velocity mismatch

between the metal and the superconductor, there always exists some minimal non-zero Z.

Probably the most illustrative case is that of the colossal magnetoresistance material La1-

xSrxMnO3 (LSMO) 10, where because of the large disparity between the Fermi velocities of

the majority and minority spin electrons, at least in one spin channel the Fermi velocity

mismatch should be very large. 11
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Another important question which was raised in connection with the BTK

formalism is the difference between the ballistic and diffusive transport, defined by the

ratio of the mean free path l of the electrons and the contact diameter, d.  In general, there

are three possible types of transport in a PCAR experiment: ballistic (l>>d), diffusive

(l<<d) and intermediate (l ~ d). One way of estimating the mean-free path is from the

Drude formula, using a measured value for σ (σ = ne2l/mνF), where (n/m) and νF can be

calculated from the band structure. The diameter of the contact d can then be calculated

employing the equation for the junction (contact) resistance 12

  )1)(2/3/4()1( 222
0 ZddlZRRN ++≈+= ρπρ ,                       (1)

where the first term in the expression for Ro is the so-called  Sharvin resistance13 for

ballistic contacts, while the second is the Maxwell resistance 14 for diffusive transport. To

determine d, RN must be measured and Z obtained by analyzing the conductance curves.

Alternatively, one can estimate the size of the contact d and the mean free path

independently (and potentially more accurately) by experimentally measuring the contact

resistance in a broad temperature range, which, however, requires high thermal stability

of the contacts.15 In many cases, it is hard to avoid fairly large uncertainties in making

such estimates and thus it is often difficult to establish the exact transport regime for the

junction conduction. Additionally, the ratio of l/d can be often close to one, thus

indicating the transport regime in the intermediate region. The applicability of the

ballistic theory for the data obtained in this regime, especially given the uncertainty in

estimating l and d, may seem problematic.

According to Ref. 7, it is possible to extend the BTK theory onto the diffuse limit.

There is an issue as to which model should be applied to a given set of data. Moreover,

no theory has yet been developed for the intermediate case. It is believed that both the

ballistic and diffusive formalisms will yield approximately the same value for Pc, albeit

with different Z values, when analyzing the same spectra. If so, and assuming that the

behavior for the intermediate case is bracketed by the ballistic and diffusive limits, then it

does not really matter which regime applies to a particular junction in a particular

experiment, as long as the value of Z is not of interest (one should, however, be aware

that the actual spin polarization of a material may be different for the ballistic and

diffusive transports19). This fact may explain why several different groups, exercising no



5

particular control over the transport regime for their point contacts, and using only the

ballistic model for the analysis (i.e., implicitly assuming the ballistic regime), still

obtained comparable results for Pc for the same materials. Earlier attempts to analyze the

same experimental spectra with both diffusive and ballistic formulas seemed to indicate

that the resulting polarizations are very close11; however, no systematic tests of this

assumption have been performed.

In this article, we will present an analysis of PCAR spectra in both the ballistic

and diffusive limits for several ferromagnetic oxides, mainly CrO2, SrRuO3 (SRO) and

LSMO, in order to illustrate some possible caveats in applying the modified BTK

formulas to real materials. Firstly, we will discuss the differences between the diffusive

and the ballistic models. Secondly, we will consider the sources of possible systematic

errors, when analyzing G(V) curves. Specifically, we will discuss the effect of using the

superconducting gap, ∆, as a variable parameter on the extracted value of Pc and show

how, with the inclusion of the additional spreading resistance Rs of the sample at a given

experimental temperature, the effects of ∆ on Pc can be eliminated. Finally, we will

consider the possible Pc vs. Z dependence seen frequently in PCAR spectra by

performing a systematic analysis of a large number of different experiments. It has been

argued that the functional dependence of Pc (Z) is quadratic10,16,17, or exponential.18 Using

statistical analysis, we will show that either exponential, quadratic, or linear dependence

has no apparent advantages over the others.

As we have mentioned above, two different models, ballistic and diffusive, may

be used to extract values of Pc from the data for G (V). Both models separate the current

at the N/S interface into spin-polarized and non-polarized contributions, and give the

expressions for G (V) for the two transport regimes in terms of the superconducting order

parameter ∆, the bias voltage, and the interfacial barrier strength Z. Table 17 shows the

equations for the total current at the interface. In addition, the equations that describe the

conductance also contain pre-factors in terms of the density of states N at the Fermi level

and the Fermi velocity ν of both majority and minority spins. For the ballistic case, the

pre-factors are <Nν↑,↓>, while those for the diffusive are <Nν2
↑,↓>. In practice, for both

models one also needs to include corrections for the spreading resistance of the sample

Rs, the additional resistance of the sample between the junction and one of the electrical
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contacts in a typical four-probe measurement scheme. The presence of Rs results in the

shift of the apparent position of the coherence peak G (V) from V ≈∆ to larger voltages

and in the change of the observed zero bias conductance value. These effects have to be

always taken into account, unless Rs is much lower than the junction resistance, which is

usually the case only for bulk samples or highly conductive films. ∆ and Rs can be used

as fitting parameters or can be determined experimentally, as was done in this paper.

First we pose the following question: If an experimental PCAR spectrum with

zero or finite Z is obtained in the diffusive regime, can one apply the ballistic, rather than

diffusive model to analyze it?  Furthermore, if this is possible, how will the values of the

parameters (Pc and Z) compare? To answer this question, we first generated a large

number of G (V) curves for a hypothetical superconductor using the diffusive model with

given values of Pd and Zd (diffusive spin-polarization and barrier strength respectively).

We then analyzed these curves using the ballistic model to obtain “ballistic” values of the

spin-polarization Pb and the barrier strength Zb. The values of T, ∆ and Rs were 0.1 or 1.5

K, 1 meV and 1 Ω respectively and these values were kept throughout. The results for

this procedure are shown in Fig. 1a,b where we plot Pb - Pd and Zb - Zd vs. Pd for values

of Zd = 0.0 and 0.75. The two main points illustrated by Fig. 1 are that: (1) Although this

procedure tends to overestimate Pc for small polarizations, and slightly underestimate it

for Pc~60-80%, potential error introduced by applying the ballistic formulas to the

diffusive contacts is negligible, less than ±3% in absolute value, for most of the spin

polarization range; (2) Whereas the obtained values of Z differ significantly for the two

models, a comparison between the values of Zb and Zd for all fits, showed that Zb is

always greater; for small Zd and Pd the difference is 0.5-0.6. This is one of the

illustrations of the hidden power of the BTK model: in our diffusive case, where we do

have a δ-functional barrier with a known strength, plus another physical effect, not

accounted for in the original BTK formalism, we see that the single parameter Z absorbs

all this additional physics, producing practically the same values of the spin polarization.

The second question we pose is: What is the effect of changing the value of the

superconducting gap on the extracted values of the spin polarization? As we have

mentioned above, it has become a rather common practice in the PCAR studies to take a

succession of G (V) curves for different point contacts and to analyze each one of them to



7

obtain the values of Pc and Z. Thereafter one plots Pc vs. Z, which is then extrapolated to

Z = 0 to obtain an “intrinsic” value of Pc for the system.10,16-18 . However, quite often the

coherence peak is displaced from its theoretical position near the bulk superconducting

gap. This effect can have two different causes: variation of the superconducting gap near

the interface or the presence of the spreading resistance, Rs. In fact, both ∆ and Rs in

every experiment should be uniquely determined. Rs can be measured independently,

whereas ∆ can be inferred from Tc using the BCS model. However, in many cases the

analysis is done using ∆ as an adjustable parameter, which, as we will show below, can

strongly affect the values of the spin-polarization. Varying ∆ is related to varying Rs, in

the sense that both shift the apparent coherence peak from its BCS value, albeit in the

opposite directions.

To illustrate the relationship between ∆ and Rs, we plot several theoretical curves

for the same ∆, spin-polarization and Z, but different Rs in Fig. 2 (inset). This imitates an

experimental situation when several contacts with different Rs are measured. It then

appears that we can describe the same set of curves with the same Rs if we allow the gap

to vary from curve to curve. Fig. 2 shows the resulting dependence of ∆ on Rs.

Importantly, now the two other parameters, P and Z are also different for different curves.

In other words, by analyzing experimental data collected with different Rs as if they all

had the same Rs (or no spreading resistance at all), the wrong ∆ is obtained and this error

propagates into the value of the spin-polarization (see Fig. 3).

Obviously, spurious dependencies appear in such a case for all three quantities: ∆,

Z and P.  This can be easily mistaken as a dependence of P on Z, as we show in Fig. 3.

There we used a single point contact spectrum of Sn/LSMO (contact #10) for a

temperature of approximately T = 1.75 K. If we assume different values for Rs, the

conductance curves G (V) as a function of the voltage at the point contact  will be

different (see the inset in Fig.3). We then analyzed the resulting curves using the standard

BTK formulas and find a different  value for Pc for each curve. As we can see from the

plot, ~ 1% error in ∆ corresponds to ~ 1% error in Pc. Therefore, it is always desirable to

evaluate the gap and the spreading resistance separately. If this is not possible, it may be

prudent to fix the value of ∆, rather then let it vary as an additional parameter. However,
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if the apparent position of the coherence peak in the raw spectra is shifted to significantly

smaller values than the bulk gap, it may be an indication of a surface suppression of the

order parameter, in which case more elaborated models are needed.

That brings us to another important point, namely, whether or not the dependence

of Pc on the value of Z, often reported in the literature, is real. As one can see from Fig.3,

in this case there is a clear correlation not only between ∆ and Pc, but also between the

value of the Z-parameter and Pc, as Z, in turn monotonically changes with the gap. On the

other hand, we know from the onset, that the actual data in Fig.3 corresponds to just one Z

(the same way it corresponds to a single value of Rs), so the “observed” Z-dependence is

utterly spurious. Note that the limiting value of Pc at Z =0 in this case is not necessarily

the “intrinsic” spin polarization, as both the gap value and Rs corresponding to this Z may

be incorrect. However, we don’t want to leave the reader with a conclusion that all of the

observed Pc (Z) dependencies are artifacts, and, as we will show below, in a number of

cases we did observe this dependence, in spite of all possible precautions in analyzing the

data.

 To further discuss the two models, we present Pb/CrO2 data, which is analyzed in

both the ballistic and diffusive limits. The (100) CrO2 films used in this study were made

by the Chemical Vapor Deposition (CVD) method described extensively elsewhere.20

The measurements of these surface-sensitive samples were done immediately after the

film deposition in order to avoid any film degradation. The measurements with Pb and Sn

contacts were performed in a liquid He bath at temperatures between 4.2 K and 1.5 K

using the technique described elsewhere.4,11

Plotted in Fig. 4 are the experimental G (V)/ GN spectra of CrO2, which were fitted

using the (a) ballistic model and (b) the diffusive model for a high-Z contact (#9) and for

a low-Z contact (#4). Displayed along with the spectra are the fitted values of Pc and Z.

Each spectrum was obtained at a temperature of approximately 1.75 K. We calculated

values of ∆ for this temperature using the BCS approximation (∆ = 1.2 meV and 0.55

meV for Pb and Sn respectively) and kept them constant throughout the analysis. We

have also used the values of the experimentally determined Rs, and made sure that it is the

same for all the contacts measured in the same geometry. Using this procedure, both

models gave nearly the same value of Pc for contact #4 (Pb = 0.81 ± 0.03, Pd = 0.85 ±
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0.03), and for contact #9  (Pb = 0.44 ± 0.03, Pd = 0.47 ± 0.03) as well as all other

analyzed PCAR spectra in this experiment (see Fig. 5).

As mentioned previously, there should be no correlation between Pc and Z in the

BTK formalism. We have also shown above that some of the Pc (Z) dependencies may be

caused by systematic errors due to inconsistent analysis of the data. Nevertheless, we

have observed such a correlation in at least some of the material systems, in which this

correlation had been previously reported, most notoriously in CrO2. To illustrate how Z

affects Pc in our spectra, we plot Pc vs. Z for our Pb/CrO2 data in Fig. 5. We first use the

ballistic formula, and obtain polarizations between 20 and 85%, with Z between 0.55 and

1.45. Pc indeed decreases with increasing Z in agreement with other studies of this

material.16 Despite the fact that there are no theoretical arguments for a linear relationship

between Pc and Z, the fitted values in Fig. 5 show a fairly good linear dependence.

However, if we extrapolate to Z = 0 linearly, we obtain 1.13 ± 0.06, which is unphysical.

In Ref. 16 a quadratic dependence of Pc (Z) for CrO2 was proposed. While this is also

hard to justify theoretically, a quadratic extrapolation gives Pc (Z = 0) = 1.05 ± 0.29. This

result gives a more realistic number for Pc (Z = 0), closer to the theoretical value for this

system21, but with a larger degree of uncertainty, which indicates that there are no

statistical arguments for using a quadratic dependency for this set of data. This is, of

course, related to the fact that we were not able to collect any data for this sample that

could be described by the ballistic model with Z<0.5. On the other hand, the same spectra

can be fitted by the diffusive model with practically the same polarization values, but

with Z varying from 0 to 1.1. So, the diffusive model for (Z ≅ 0) yields Pc = 0.85 ± 0.03

without any extrapolation. Thus, if we were dealing with an unknown material we would

have a dilemma: to either use the ballistic model and quadratic extrapolation to Z=0, but

with a large uncertainty, or the diffusive model without extrapolation and thus with a

smaller value of Pc (and, if the linear extrapolation would not yield Pc > 100%, we would

have to think about this alternative as well). In this specific case, as the film was of

relatively low quality and with high residual resistivity, it is likely that our sample does,

indeed, have Pc<1. In other words, the correct value of Pc in this case is probably the one

given by the diffusive model. The fact that we were not able to obtain any spectra with

Zb<0.5, which is the minimal Zb that can be obtained in the diffusive regime (Fig. 1), can
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serve as a red flag suggesting that we are, indeed, in the diffusive regime. On the other

hand, if in an experiment Zb<0.5 is observed, this is a good indication that ballistic

formulas should be applied, with a subsequent extrapolation.

As stated above, there is no theory that suggests Pc (Z) should be either linear or

quadratic. However, Kant et al. (Ref. 18) proposed that Pc could be written as

P ≈ P0exp(-2αψZ2),

where P0 is the intrinsic value of the spin-polarization, α is defined as the spin-flip

scattering probability and ψ is the ratio of the forward and backward scattering

probabilities. The above equation from Ref. 18 was derived by a relatively elaborated

procedure. However, its physical meaning is very simple: in their model, Z2 is derived

from multiple scattering within the interface region (it is noteworthy that this assumption

is applicable only for diffusive contacts though the authors apply it in the ballistic case).

Obviously, Z2 is proportional to the number of collisions and therefore to the ratio d/l. On

the other hand, a natural (but not always correct) interpretation of the polarization

suppression with Z is spin-flip scattering by impurities in the interface. This is also

proportional to the number of scattering events, albeit that only a small fraction of

scattering results in a spin flip. This immediately leads to Eq. 2, where α << 1 is of the

order of l/lsd, where lsd is the spin diffusion length. Interestingly, even when actual data

can be fitted by an exponential formula, the product αψ both in Ref. 18 and our own

similar calculations (See Table 2) is of the order of, and not much smaller than one,

which simply reflects the fact that the assumption of a diffusive regime, implicitly used in

the derivation, does not hold. On the other hand, it is obvious that for poor contacts with

large Z and strong spin-flip scattering the apparent value for Pc should tend to zero.

Furthermore, since the total contact resistance RN in the BTK model is proportional to (1

+ Z2), it is natural to assume that in many cases the spin-flip scattering, whether from

impurities or not, depend on Z2, and not on Z. Therefore, the exponential function, which

smoothly interpolates between the two limits, may have some validity. Nonetheless, there

is no significant improvement in using Eq. 2 over a quadratic or even a linear dependence

(cf. the values of the χ2criterion for the three fits as shown in Table 2 and plotted in Fig.
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6. For all materials the three χ2 values are very close, which indicates that all three

extrapolations are of comparable statistical quality).

In summary, we have discussed an analysis of PCAR spectra using the ballistic

and diffusive models. By careful analysis of the PCAR data using this procedure,

important information concerning the transport spin-polarization may be obtained on

candidate materials for applications of spintronics devices. We have proven that both

ballistic and diffusive models yield essentially the same values of the spin polarization

(with the accuracy of approximately 3%) practically within the full range of P. We have

also shown that in some cases the observed correlation between Pc and Z can be due

solely to systematic errors in the data analysis. At the same time we have confirmed a

previously observed correlation for Pc (Z) dependence in CrO2, and some other material

systems, in which case the interpolation to Z = 0 is legitimate. At the same time we

conclude that, as of now, there is no extrapolation formula that is significantly better than

the others. We have also noted that if all available PCAR data correspond to sizeable Z in

the ballistic model, the ballistic conditions should be independently verified before

extrapolating to Z = 0. Much more work is needed to explain the mechanisms as to why

the intrinsic value of the spin-polarization decreases when Z increases when analyzing

PCAR spectra using either limit. It is encouraging, however, that, the modified BTK

formalism seems to be able to absorb a number of physical effects well beyond the scope

of the underlying model into a single number, Z. Therefore, the values for the interfacial

spin polarizations appear substantially more reliable than one could have anticipated from

purely theoretical viewpoint.

The work at NRL was supported by the Office of Naval Research. B. N.

acknowledges support by DARPA through ONR N00014-02-1-0886 and NSF Career

grants.
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FIG CAPTIONS

FIG.  1 Comparison between the assigned values of the spin-polarization and Z

parameters using the diffusive model (Pd, Zd) and the fitted values using the ballistic

model (Pb,Zb). The two vertical axes show the shifts in (a) Pb - Pd and (b) Zb - Zd. The

highest percent shift for the polarizations is 5 %.

FIG. 2. Plot of ∆ vs. Rs from theoretically generated curves. Each curve was generated

using fixed values of T, Rs, and Z but with different ∆’s and then fitted to obtain new

values of Rs. The inset shows some of the curves generated and the new fitted values of

Rs.

FIG. 3. Pc vs. ∆ for one point-contact spectrum of Sn/LSMO. The inset serves to illustrate

that, in each extracted value of Pc obtained from the models, a quality fit was achieved.

All fits were done in the ballistic limit.

FIG. 4 Analyzed G (V) curves of two point-contact spectra of Pb/CrO2 in the (a) ballistic

limit and (b) the diffusive limit for positive bias voltage. The temperature used in the fits

was T = 1.75 K, the value of ∆ = 1.2 meV and Rs ~ 0.5. The negative bias voltage spectra

were symmetric to the positive bias spectra in all cases.

FIG 5 Pc vs. Z for Pb/CrO2 in the ballistic (filled squares) and the diffusive (empty

circles) for several point-contacts. Extrapolations to Z = 0 linearly and quadratically give

Pc (Z=0)  = 1.13 ± 0.06 and Pc (Z = 0) = 1.05 ± 0.29 respectively. The value for the

diffusive model with no extrapolation yields Pc (Z = 0) ~ 0.85 ± 0.03. Dashed lines

connect the two results from the same point contacts.

FIG. 6 Plots of χ2 for a linear extrapolation (χL) and a quadratic one (χQ). The results

show that statistically these extrapolations are equivalent.
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Table 1. Components of the modified BTK formalism. The following notations are used:

1)2(/)2(cosh)(,||/ 2221222 −++=∆−= − xZxZxFVeeVβ .

∆<eV ∆<eV
Ballistic non-magnetic

222

2

)21(
)1(2

Z++
+

β
β

221
2

Z++ β
β

Ballistic half-metallic 0
22 4)1(

4
Z++ β

β

Diffusive non-magnetic
)]()(Im[

2
)1( 2

ββ
β
β

iFiF −−
+ )(ββF

Diffusive half-metallic 0 ]12/)1[( 2 −+ ββF
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Table II.  Fitted values from Eq. 1 for several ferromagnetic materials including CrO2

from this work. Also included are statistical comparisons of the linear (χL
2), quadratic,

(χQ
2) and exponential (χE

2) extrapolations.

        Material        P0        αψ χL
2 χQ

2 χE
2

CrO2 (this work) 0.93 ± 0.03 0.245 ± 0.05 35.6 45.1 36.5
CrO2 (Ref. 16) 0.96 ± 0.02  1.5 ± 0.23 19.8 9.6 9.8
SRO (Ref. 22) 0.58 ± 0.01  0.59 ± 0.2 1.8 5.2 1.9
SRO (Ref. 17) 0.53 ± 0.01  1.12 ± 0.12 2.6 1.5 1.3
LSMO (x = 0.4) (Ref. 10)  0.82 ± 0.02   0.31 ± 0.03 10.8 6.8 7.7
LSMO (x = 0.3) (Ref. 10)  0.78 ± 0.01   0.243 ± 0.03 10.0 6.3 3.9
Ni (Ref. 16)  0.38 ± 0.01   1.94 ± 0.18 1.1 2.0 0.9
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FIG.1
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FIG. 2
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FIG. 3

0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sn-LSMO contact # 10

 

 

 P = 0.94, Z = 0.025, gap = 0.5
 P = 0.88, Z = 0.15, gap = 0.57
 P = 0.81, Z = 0.3, gap = 0.62
 Fit from theory

no
rm

al
iz

ed
 c

on
du

ct
an

ce

bias voltage (gap units)

Sn/LSMO contact # 10

 

 
P

c

∆ (mV)



20

FIG. 4a
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FIG. 4b
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FIG. 5
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FIG. 6
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